37 research outputs found

    Perdurantism, Universalism, and Quantifiers

    Full text link

    Applying spatial reasoning to topographical data with a grounded geographical ontology

    Get PDF
    Grounding an ontology upon geographical data has been pro- posed as a method of handling the vagueness in the domain more effectively. In order to do this, we require methods of reasoning about the spatial relations between the regions within the data. This stage can be computationally expensive, as we require information on the location of points in relation to each other. This paper illustrates how using knowledge about regions allows us to reduce the computation required in an efficient and easy to understand manner. Further, we show how this system can be implemented in co-ordination with segmented data to reason abou

    Reasoning mechanism for cardinal direction relations

    Get PDF
    In the classical Projection-based Model for cardinal directions [6], a two-dimensional Euclidean space relative to an arbitrary single-piece region, a, is partitioned into the following nine tiles: North-West, NW(a); North, N(a); North-East, NE(a); West, W(a); Neutral Zone, O(a);East, E(a); South-West, SW(a); South, S(a); and South-East,SE(a). In our Horizontal and Vertical Constraints Model [9], [10] these cardinal directions are decomposed into sets corresponding to horizontal and vertical constraints. Composition is computed for these sets instead of the typical individual cardinal directions. In this paper, we define several whole and part direction relations followed by showing how to compose such relations using a formula introduced in our previous paper [10]. In order to develop a more versatile reasoning system for direction relations, we shall integrate mereology, topology, cardinal directions and include their negations as well. © 2010 Springer-Verlag
    corecore